Virtual Engineer-a-thon Activity Plan

Student Organization: AIChE

Title of Activity	Homemade Lava Lamps
Content of Subject Area	Fluid properties, attraction forces, reactions
Length of Video	10-15 min
Duration of Activity	Include time estimates if possible

Safety protocols

Structure group to demonstrate diversity & inclusion

Credits/Subtitles

General Objectives Once clear sentence addressing the scope of the activity and how it relates to engineering or computer science	To discover and observe the basic scientific principles of density and polarity through the creation of a lava lamp.	
Learning Outcomes		
<i>What do you want students to know and be able to do?</i>	Describe how a lava lamp works in scientific language Be able to connect observations to scientific principles	
What knowledge skills	principles	
strategies, and attitudes do you expect students to gain?	Density and Polarity are fundamental principles applied everyday in chemical engineering	
What important math/science and engineering or computer science applications will students learn?	Saftey: googles, apron or old clothes, towels to immediately clean spills	
What are the safety protocols you should take.		
Materials and	1) Flask, tall glass or jar	
Resources	2) Vegetable oil	
	3) water	
Provide a list of materials,	4) Food Coloring	
people, and references	5) alka-seltzer tablets	

that 1) you used to create the activity; and 2) are required to teach the activity, including all physical materials, sources and resources outside the classroom	<i>Resources:</i> <u>https://www.homesciencetools.com/article/h</u> <u>ow-to-make-a-homemade-lava-lamp-science</u> <u>-project/</u>	
Procedures Why should students care about this topic or activity? How does it help them learn about engineering or computer science? What "big" questions will generate discussion about this topic and what engineering, or computer science is? (Reference Grand Challenges when possible - tie back to earlier videos)	 Procedure: fill flask most of the way w/ vegetable oil Fill the rest of the flask with water. Stop and Observe the water going to the bottom Key Question: Why do you think the water and oil do not mix when we put them together? Add drops of food coloring. Food coloring is water based so it sinks too Break an alka seltzer tablet into a few pieces. and drop into the flask one by one. Stop and Observe Key Questions: What did the alka seltzer tablet do? Mention reactions happening. Key question 2 introduces density. Key Question 2 introduces simple polarity Mention simple example of both of these principles in the context of engineering 	